3D Objects, CNC and Machining, Creative, Engineering

Emergence

Ideas are more or less a mental representation of an object. What thought provoking idea do you have today, I thought some time ago. Then it hit me like a light bulb popping out of thin air in cartoons when the character gets an idea.

Why not make that?

So meta!

Anyway, I had a long desire to make something out of wood, but it had to be 3D. Without any tools in my hand to make a 3D object out of wood, I had to make it 2D. Neither I, nor my tools would budge, so we compromised and decided to make it 2.5D.

Why is it 2.5D? Because I only had access to X,Y and half of Z axis.

In the end, it came out as I had planned. Just like a light bulb popping out of thin air in a cartoon. but this time, out of a block of wood.

This slideshow requires JavaScript.

Well, it is called emergence because it emerged like an idea. But it also true that it looks like the idea is still forming while it reveals itself. Enjoy this video, it is a bit longer than usual since this will be my last post on using CNC… For now.

Thank you for reading!

2D designs, Creative, Engineering, Interactive Design

Circular shapes

Circle― the most beautiful 2-dimensional shape, the infinite sided polygon…

No! No it’s not; it’s a limit curve of a regular polygon say the math nerds.

Alright, I agree. But as long as we agree that circular shapes are very pleasing to the eyes. Any object with curved corners looks great― phones, mugs, rings. Even throughout history, circular shapes have influenced the progress made by humanity. I will stop now and get to the point.

So, while designing the Elmentory Atom, I had the option for making these plug and play devices in any shape. Atom itself has 4 types of units. Originally, the plan was to make each unit a different shape. But after doing some research, it was evident that different shapes would be a bad idea. Circular was the best choice.

But, because we were using tiny electro-mechanical components to build them, each unit could not be perfectly circular, but had to have flat edges to accommodate for the rectangular connectors. I don’t know if you can see them― each of them is 35mm or less in diameter― in the images below, but the black connectors align perfectly with the colorful boards.

This slideshow requires JavaScript.

Apart from the shape, the other important feature was the symmetry of each device. Each component was placed in a particular spot on the board to make the board look symmetric at least along one axis.

Finally, the most important part (I’m writing this last instead of first because of the title) was to make sure the devices were easy to use. Each of these devices can be connected to one another. But if they are connected wrong, it would not work, yet neither will it harm the user, i.e. the child playing with them.

Each device had a name on the top, and a specific color based on how it operated. Some inspirations were taken from common objects such as traffic lights to specify the color. The bottoms of the devices were mostly white, and helped the child identify if they were connecting the devices correctly.

This project was fun, because I had to literally think like a child to see what could go wrong. Fortunately, there were also several usability tests made with real kids during development to improve the product before releasing it.

 

3D Objects, Creative, Engineering, Redesigning Something That Exists

Infinitely Remoldable Substance

When I was working on Mobility devices for the Elderly project, my team and I had to do design research on why/how the seniors in the greater New York area used assistive devices for ambulation. While we uncovered many different insights, one of the thing that struck out was the ergonomic nature of the device itself.

Seniors used walkers, canes, rollators, shopping carts and also other make-shift devices to support themselves when they moved from place to place. No matter what device they used, it had to be comfortable to use. Comfort here doesn’t equate to the psychological feeling of stigmatization, rather, it is the congenial ease in using the device itself– hence the ergonomic nature.

When working on the ‘Adaptacane‘, we came across many materials to use it for the grip of the cane, such as memory foam. However, the best material that one could possibly use while making the grip of the cane is polycaprolactone (try saying that a few times). This material, sometimes shortened as PCL, can be molded by applying heat from, say hot water, and shaped into anything, including the shape of the inside of a gripping hand. It is also biodegradable!

Let’s look at an example:

The best part of using this material was that it could be remolded any number of times. The handle (white) of the adaptacane prototype below was made using PCL.

This slideshow requires JavaScript.

 

Pretty cool stuff!

3D Objects, Creative, Interactive Design

Virtual Landscapes

So I had a conversation with a man working on his startup of making lives of architects and interior designers easy (in Layman’s terms). This led me to checking out Unreal game engine. Although I had used Unity engine before, this would be the first time I’d be using Unreal. No, I’m not counting the countless games I’ve played , like Mass Effect and others.

This slideshow requires JavaScript.

It might be Dunning and Kruger speaking, but I think creating textures and materials seems fairly easy to me. Who am I kidding? I’ve only grazed the surface, and so far I’m really excited to see what more I can uncover with this.

Check this simple game level I created because of curiosity. Use WASD to move around, space to jump, and mouse to orient. Going beyond the edge of the level will make you fall down because I did not add invisible walls. Also, Alt+F4 exits the game. Heads up, there is music in the level, because I was bored.

3D Objects, CNC and Machining, Creative, Engineering, Redesigning Something That Exists

Fidget

The 2010s can be divided into two eras — the time before and after fidget spinners came to existence. The weird part is that they came out of nowhere, and now they don’t seem to exist at all!

In fancy MakerSpaces, it is quite common to make these using 4 cylindrical ball bearings, and printing the shell. However, where’s the fun in boring old 3D printing? Besides, it takes quite a while to print. And not to mention, there is always going to be tolerance issues, because low fidelity printers are not supposed to be accurate.

Truth be told, using a thick piece of acrylic and laser cutting is perhaps the fastest way to do this. But a laser cutter is limited to cutting at most an eighth to a  quarter of an inch, beyond which one will have to repeat the trace on the piece of acrylic. And this would cost, surprise, surprise… the tolerance.

This slideshow requires JavaScript.

Regardless of the backstory, I was thinking of using multiple machines to make something. The plan was to use my trusty desktop CNC milling machine along with the water jet. I used delrin to make the case or the shell, and the caps. Then, I cut a thick piece of steel slab into circles, to give the spinner some weight.  All in all, it worked exceptionally well!

P.S. I’m not making another one, not in this way… ever. Also, I don’t think fidget spinners make good Christmas presents.

2D designs, Creative, Engineering, Interactive Design

Holy Diver

With Halloween coming soon, I though about posting a wearable game that my classmate Sam and I made some time ago. It is called Holy Diver.

The principle is that a demon is throwing fireballs at you, while you can catch them and throw it back at it, or defend yourself by joining your palms. However, if you get hit thrice, it is game over!

The game is very small, and it’s prototype can be downloaded here.

The game ran on unity. Well, the song Holy Diver by Dio was meant to be played in the back while playing the game, hence the logo on the costume. It was one of the first time I used a laser cutter on fabric. Laser cutters can be handy in making burned effects on clothes. A costume was made for the game, using Adafruit flora.

This slideshow requires JavaScript.

Creative, Project Spark

Intuition in Kids

Some time ago, we were testing a STEM related product for kids at a low income school. The purpose of this project was to find out if kids could program using block programming. Another interest was to see how intuitive it was to use a plug and play hardware without much intervention.

The kids really did a good job at expressing their creativity by making fun projects! Due to the success, a newer version of the prototype was developed.

This slideshow requires JavaScript.

CNC and Machining, Engineering

Water-jet cutting

Water-jet machines are a special class of CNCs which use highly pressurized jets of a mixture of water and powdered abrasive, such as garnet. This can be assumed to be similar to Laser Cutters. They can only cut objects in 2 dimensions. However, unlike a laser cutter, the water-jet can cut through thick metals like steel, aluminum, and even carbon nano-fiber sheets!

Here is an example of a circular disc I cut from a steel slab for a funny little project, which uses the delrin from a previous post.

This slideshow requires JavaScript.

Here is another example of water-jet cutting to make a keychain.

Engineering

Engraving Tools

Engraving on metallic surface doesn’t necessarily need an engraving tool. Depending upon the kind of application, the type of tool can be different. For example, when milling PCBs, a engraving tool can be substituted for a flat end mill tool for better accuracy when it comes to having very minute spaces between tracks, pads or holes.

It is not just the size of the tool that matters, but also the type of the tool used. In a previous post, I had used an engraving tool. Here is just an example of how different it looks when a different tool is used to engrave on a aluminum surface. I used a ball end mill, which is used to give effects of curving or filleting on the edges of the object. Spoiler alert: it did not turn out as I wanted it to.

Check out the video; the process is short and quick.

Engineering

Making Printed Circuit Boards the old way

Printed circuit boards (PCB) are used in every electronic device.  The PCBs, before they show the circuit itself on the board, they contain a layer of copper deposited on them. This is later removed – etched, to be exact – in the unwanted areas, and become the “connecting wires” within  the electronic circuit. These days, milling machines are used to remove the copper accurately so that human errors are minimal.

Of course, if the design itself is flawed, no machine can compensate for that kind of human error.

Before milling machines were invented or, before it was affordable to use milling machines for PCB etching, the process was done using chemicals. It is still done in that way, but not extensively, as the process has a tendency to remove all of the copper if not done carefully.

The video below shows the simplest way to etch a PCB using household Muriatic acid, ferric chloride, and a clothes iron.