3D Objects, Blurbs, Optimizing 3D Prints, Sustainability

Optimizing 3D Prints- Brief

Due to the plethora of things made using 3D printers, a large amount of waste is produced in the form of failed prints and wasted filaments to obtain prints of the best quality. It is important to ensure that the printing material wastage is minimal, even when it is inexpensive, for a more sustainable additive manufacturing. To keep a printed object the closest in appearance to its computer aided design, it is ideal to test the parameters that make for its surface quality. With the appropriate settings for these parameters, it is possible to reduce material waste and print failures. This paper shows that, it is possible to determine the optimal settings for different levels of infill, so that the user specifications are met. It also presents the statistical experiments performed on the printed objects of specific shapes, color and infill level, the tomographic images of the outer shell and the internal structure of their infill, to obtain the favorable configurations for optimal print quality.


This was supposed to be a journal paper titled Determining Favorable Configurations for Low-fidelity Filament Freeform Fabrication 3D Printers to Attain Optimal Print Quality and Reduce Wastage, but I think I will post it in my blog instead.

Why? Because this is the best course of action. Enjoy my months of research which I will post occasionally.

2D designs, Engineering, Interactive Design, Optimizing 3D Prints

Heat Maps

It’s 3.14! Happy Pi Day!

A heat map is a graphical representation of collected data, where large data points are plotted in such a way that it represents the concentration of those points through colors. The color scheme depends upon the choice of the user. Normally, a darker color represents higher density and a lighter color, lower density of the data points.

Using heat maps often help identify the flaws within physical objects (if one knows what to do and how to use it), and movements of mouse cursor, or density of visual concentration while eye tracking in interactive displays.

This makes them very useful in user experience and usability studies to understand why people choose certain parts of a website or a software, and where they have their eyes fixed while using it.

Below is an blurred image of a website (left) and its heat map generated (right) while I was testing it to improve its usability.

Below is a time lapse video of heat maps generated by scanning hundreds of layers of a 3D printed object using an X-ray CT scanner for one of my projects, which has something to do with optimizing 3D prints. More on this another time.