3D Objects, Engineering, Optimizing 3D Prints, Sustainability

Optimizing 3D Prints: Results: Optimum Configurations for 3D Printing (Part 2)

Results: Optimum Configurations for 3D Printing

The summary of optimal settings obtained in the case of Experiment-1 and Experiment-2 can be found in Table 2 and Table 3 respectively. It shows the most ideal and least ideal configurations to use when it comes to choosing between the factors. It also shows which factors, or the factorial interactions contribute to the printed object in a statistically significant manner. This indicates the user to keep an eye on them.

Infill (Factor B) Most Ideal Configuration Least Ideal Configuration Statistically Significant Factors
Low High Height Base Area Height Base Area Height Base Area
Hollow 20% Natural

20%

None

Natural

20%

None

Natural

20%

Tapered

Natural

Hollow

Tapered

C No

Factors

Hollow 80% Natural

80%

None

Natural

80%

None

Pink

80%

Tapered

Natural

80%

Tapered

C B
Hollow Solid Natural

Solid

None

Pink

Solid

None

Pink

Solid

Tapered

Natural

Solid

Tapered

No

Factors

No

Factors

20% 80% Pink

80%

None

Pink

80%

Tapered

Pink

80%

Tapered

Natural

80%

Tapered

A, C

A*C

A*B*C

A

A*B, A*C

A*B*C

20% Solid Natural

Solid

None

Pink

20%

None

Pink

20%

Tapered

Natural

Solid

Tapered

A, C

B*C

B
80% Solid Natural

80%

None

Natural

80%

None

Pink

80%

Tapered

Pink

80%

Tapered

A, C B, C

A*C

Table 2 Summary of the results of the optimal configurations of Experiment-1

 

Infill (Factor B)

Most Ideal Configuration Least Ideal Configuration

Statistically Significant Factors

Low High Height Base Area Height Base Area Height Base Area
Hollow 20% Natural

Hollow

None

Natural

20%

None

Natural

Hollow

Tapered

Blue

20%

Tapered

C

A*C

B
Hollow 80% Natural

80%

None

Natural

80%

None

Natural

Hollow

Tapered

Natural

Hollow

None

C B, C

B*C

Hollow Solid Natural

Solid

None

Natural

Solid

None

Natural

Hollow

Tapered

Blue

Solid

Tapered

C

A*C

A

A*B, B*C

20% 80% Natural

80%

None

Natural

80%

None

Natural

20%

Tapered

Blue

20%

Tapered

C

A*C

A*B*C

C

A*B

20% Solid Natural

Solid

None

Natural

20%

None

Natural

20%

Tapered

Blue

Solid

Tapered

C

A*C

A, B, C
80% Solid Natural

80%

None

Natural

80%

None

Blue

80%

Tapered

Blue

Solid

Tapered

A, C

A*B, A*C

A*B*C

B, C

A*B

Table 3 Summary of the results of the optimal configurations of Experiment-2

 

When color pigments are added to natural PLA, some of its properties such as crystallinity is affected [25], leading to variation in the way the material prints. Hence, a similar experiment was performed with two different pigmentations of PLA. Factor A’s levels were changed to pink and blue. However, other factors and the settings were kept the same. The expected values also remained the same. Table 4 shows the optimal configurations for the Experiment-3.

 

Infill (Factor B)

Most Ideal Configuration Least Ideal Configuration

Statistically Significant Factors

Low High Height Base Area Height Base Area Height Base Area
Hollow 20% Blue

20%

None

Pink

20%

None

Blue

Hollow

Tapered

Blue

20%

Tapered

No Factors No

Factors

Hollow 80% Blue

80%

None

Pink

80%

Tapered

Pink

80%

Tapered

Blue

Hollow

Tapered

No Factors B
Hollow Solid Blue

Hollow

None

Pink

Solid

None

Blue

Solid

Tapered

Blue

Solid

Tapered

No Factors No

Factors

20% 80% Blue

80%

None

Pink

80%

Tapered

Pink

80%

Tapered

Blue

20%

Tapered

A, C

A* C

A, B, C

A* C

20% Solid Blue

Solid

None

Pink

20%

None

Pink

20%

Tapered

Pink

Solid

Tapered

A, C

A* C

A, B, C

 

80% Solid Blue

Solid

None

Pink

80%

Tapered

Pink

80%

Tapered

Blue

Solid

Tapered

A, B, C

A*C, B*C

A, B, C

A*C

A*B*C

Table 4 Summary of the results of the optimal configurations of Experiment-3

 

The data from Table 2-4 show that tapered objects should have a lower priority while 3D printing. The bigger the shape, the more accurate the overall geometry [20], hence the cones can clearly be seen having the least ideal configuration in all cases, because the size of each successive layer reduces since they taper. Also, objects printed using natural PLA are consistently seen in the most ideal configuration columns in Table 2-3, making it preferable when compared to its colored counterparts. Choosing the settings available in Tables 2-4 could prove beneficial to reduce filament wastage while printing using PLA.

 

References

References can be found in the Introduction section.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s